AN ELECTRONIC JOURNAL OF THE
SOCIETAT CATALANA DE MATEMÀTIQUES

The Gromov-Hausdorff distance between compact metric spaces

Rafael Martínez Vergara

Universitat de Barcelona
rafamv2017@gmail.com

Abstract

Resum (CAT) Aquest treball proporciona una introducció a la distància de Gromov-Hausdorff, discutim la seva definició original i la seva relació amb les correspondències entre espais. Demostrem que la distància de Gromov-Hausdorff serveix com a mètrica per al conjunt de classes d'isometria d'espais mètrics compactes. Els objectius principals d'aquest estudi són establir l'existència d'una pseudomètrica en la unió disjunta de X amb Y que aconsegueix la distància de Gromov-Hausdorff entre espais compactes X i Y, i per establir límits per al Gromov-Hausdorff distància entre esferes de diferents dimensions.

Keywords: Hausdorff, metric, correspondance.

Abstract

The Gromov-Hausdorff distance between metric spaces X and Y, denoted by $d_{G H}(X, Y)$, quantifies the extent to which X and Y fail to be isometric. The Gromov-Hausdorff distance is used in many areas of geometry, in applications to shape and data comparison/classification, one aims to estimate either the Gromov-Hausdorff distance between spaces or the Gromov-Wasserstein distance, which is one of its optimal transport induced variants.

Let A, B be pseudo-metric spaces. The Gromov-Hausdorff distance (see [2]) between A and B, denoted by $d_{G H}(A, B)$, is the infimum of all $\varepsilon \geq 0$ so that there is a pseudo-metric space M and isometric embeddings $i_{A}: A \rightarrow M$ and $i_{B}: B \rightarrow M$ such that $d_{M}\left(i_{A}(A), i_{B}(B)\right) \leq \varepsilon$, where d_{M} denotes Hausdorff distance in M. Then we prove that we can actually restrict ourselves to pseudo-metrics on the disjoint union of A and B.

We introduce correspondences between sets and the concept of distortion of a correspondence in order to prove that the Gromov-Hausdorff distance can be computed using them. For any two pseudo-metric spaces X and Y,

$$
d_{G H}(X, Y)=\frac{1}{2} \inf _{C}\{\operatorname{dis}(C)\},
$$

where the infimum is taken over all correspondences C between X and Y. The set of isometry classes of compact metric spaces endowed with the Gromov-Hausdorff distance is a metric space.

We study the structure of the metric space of metrics on a given set. We focus on the case where the given space is a complete and compact metric space. Then we study the set of closed relations and the subset of closed correspondences (see [3]), which turns out to be a compact set. We prove that the
distortion function is a continuous function. Hence we obtain the following result: For any two compact metric spaces X and Y there exists a correspondence R such that $d_{G H}(X, Y)=\frac{1}{2} \operatorname{dis}(R)$.

We focus on the case of estimating Gromov-Hausdorff distances between spheres of different dimensions (see [1, 5], for a generalization see [4]). We relate Gromov-Hausdorff distance, Borsuk-Ulam theorems, and Vietoris-Rips complexes as follows. Estimating the Gromov-Haudorff distance $d_{G H}(X, Y)$ for metric spaces X and Y involves bounding the distortion of a function $f: X \rightarrow Y$, which measures the extent to which f fails to preserve distances; the more functions between X and Y distort the metrics, the larger $d_{G H}(X, Y)$ must be. When X and Y are spheres, it is sufficient to consider odd functions. We transform an odd function $f: \mathbb{S}^{k} \rightarrow \mathbb{S}^{n}$ into a continuous odd map between Vietoris-Rips complexes. Then we obstruct the existence of such maps with the $\mathbb{Z} / 2$ equivariant topology of Vietoris-Rips complexes, measured via the following quantity: For $k \geq n$, we define

$$
c_{n, k}=\inf \left\{r \geq 0 \mid \text { there exists an odd map } \mathbb{S}^{k} \rightarrow V R\left(\mathbb{S}^{n} ; r\right)\right\}
$$

Due to a theorem of Hausmann, there is a homotopy equivalence $V R\left(\mathbb{S}^{n} ; r\right) \simeq \mathbb{S}^{n}$ for sufficiently small r, and moreover there is an odd map $f: V R\left(\mathbb{S}^{n} ; r\right) \rightarrow \mathbb{S}^{n}$. The Borsuk-Ulam theorem then implies that no odd $\operatorname{map} \mathbb{S}^{k} \rightarrow V R\left(\mathbb{S}^{n} ; r\right)$ exists for such r unless $k \leq n$. In particular, $c_{n, n}=0$. Therefore, the quantity $c_{n, k}$ represents the amount by which \mathbb{S}^{n} needs to be "thickened" until it admits an odd map from \mathbb{S}^{k}.

We find bounds for the Gromov-Hausdorff distance between spheres: For all $k \geq n$, the following inequalities hold:

$$
2 \cdot d_{G H}\left(\mathbb{S}^{n}, \mathbb{S}^{k}\right) \geq \inf \left\{\operatorname{dis}(f) \mid f: \mathbb{S}^{k} \rightarrow \mathbb{S}^{n} \text { is odd }\right\} \geq c_{n, k}
$$

And that for every $n \geq 1$, we have that $d_{G H}\left(\mathbb{S}^{n}, \mathbb{S}^{n+1}\right) \leq \pi / 3$.

Acknowledgements

I would like to thank my family and all the people that have been around me during the creation of this work, especially my supervisor, Dr. Carles Casacuberta Vergés.

References

[1] H. Adams, J. Bush, N. Clause, F. Frick, M. Gómez, M. Harrison, R. Amzi Jeffs, E. Lagoda, S. Lim, F. Mémoli, M. Moy, N. Sadovek, M. Superdock, D. Vargas, Q. Wang, L. Zhou, Gromov-Hausdorff distances, Borsuk-Ulam theorems, and Vietoris-Rips complexes, Preprint (2022). arXiv:2301.00246.
[2] D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math. 33, American Mathematical Society, Providence, RI, 2001.
[3] A. Ivanov, S. Iliadis, A. Tuzhilin, Realizations of Gromov-Hausdorff distance, Preprint (2016). arXiv:1603.08850.
[4] N.J. Kalton, M. I. Ostrovskii, Distances between Banach spaces, Forum Math. 11(1) (1999), 17-48.
[5] S. Lim, F. Mémoli, Z. Smith, The GromovHausdorff distance between spheres, Preprint (2021). arXiv:2105.00611.

비누눙 Institut
Estudis
Catalans Estudis
https://reportsascm.iec.cat

